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The moment generating function related to Bell polynomials
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Abstract: In this paper, an investigation has been conducted on the moment functions of various probability
variables concerning the recently studied exponential A-analogue. Using degenerate polynomials, generalized
expressions for the mean and variance were derived and directly computed. Additionally, by leveraging Stirling
numbers and Bell polynomials, connections with Poisson random variables were explored. Furthermore, mean-
ingful results were obtained using covariance analysis. Moreover, we utilized these results to define a new form
of Bell polynomials. We anticipate that investigating the properties of these polynomials in future research will
yield new and valuable results.
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1 Introduction

For any 0 # A € N, it is well known that degenerate exponential is defined by

X
() =(1+)A )
_ (x)"’ftn (See[1]) )

n:

n=0

Here (x)oa=1,()pa=x(x—=2) - (x—(n—-1)2) (n > 1).
And we can easily show that limy_,g e} (¢) = ™, ell(t) =e,(1).
Let’s consider its derivative with respect to 7. Then we have
X
Ee/l(’) = E( + A1)
X
e
=—(1+At .
~(1+1)

x
—1
=x(l+arl
X
L 1+
= t
1+/lt( *+An
* X
:mea(W 3)

Let X be the any random variable. The moment generating function $(¢) for the random variable X is
defined as follows, the n-th moment of X is given by E[X"]

oo tn o0 tn

n _ n__
S epeil-e[Set
n=0 n=0

= E[¢X"] : generating function of moment e
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and

& (t) = the moment generating function of random variable X.

= E[eX]
> e p(x) if X is discrete random variable,
=15 s)
Lm e* f(x)dx if X is continuous random variable.
Here p(x) is the probability mass function of discrete random variable of X,
f(x) is the probability density function of continuous random variable of X.
Note that
d
(1) = —E[eXt
(1) = —E[eX]
d
— B[ Xt
[5¢7]
= E[XeX].
In particular
$'(0) = E[X]. (6)
From
d
¢// = —E[X Xt
(1) = —E[XeX]
d
= E[—XX
[Xe™]
= E[X%eX].
we get
¢"(0) = E[X?]. ©)

By continuing above process we can show that (") (0) = E[X"]. In addiction, by (6), (7) and definition of
variance we get following equation

Var(X) = E[X*] - (E[X])?
= ®”(0) - (¢(0))*. ®)
Suppose that n independent trials, each of which results in a ”success” with probability p and in a "failure”

with probability 1 — p, are to be performed. We call X is the binomial random variable with parameter n, p,
which denoted by X ~ B(n, p). Then the probability mass function of X is given by

P[X=i]=p(i)= (’l.’)p"a P (i=0,1,2,---,n)  (See[2]). ©)

The moment generating function of binomial random variable X is given by

(1) = E[eX]
= (k)
k=0

& k n—k kt
= p“(1-p)""e
%[

=(pe' +1-p)". (10
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Hence, if X -~ B(n, p), then
®(1) = (pe' +1-p)". 1n
From (11), we get the following results:
&' (1) = n(pe' +1-p)"~'pe’,

(1) = n(n — D)(pe' + 1= p)"2(pe'? +n(pe' +1=p)''pe'
Therefore, ¢’ (0) = np, $”(0) = n(n — 1)p? + np, and by (8)

Var(X) = (n(n - 1)p* +np) — (np)*
=np(l -p). (12)

n
The Bell polynomials Bel,, (x) = 3, Sa(n, k)x™ (Sa(n, k) : Stirling numbers of the second kind) (See[1])
k=0

are natural extensions of the Bell numbers which are a number of ways to partition a set with n elements into
nonempty subsets. It is well known that the generating function of the Bell polynomials is given by

t - "
¥ =D = ZBeln(x)— (See[2, 3, 4, 1]) )
o n!

Definition of Poisson random variable is expresses the probability of a given number of events occurring in
a fixed interval of time or space. X taking on one of the values 0, 1,2,---. We denote X ~ Poi(a) (o > 0).
The probability mass function is
i

pi) == (Seel2, 3)). (14)

If we apply the process we used for the moment generating function of the binomial random variable to the
Poisson random variable, we’ll obtain the following result.

&(1) = E[eX!]

= > e p(k)
k=0
_ iekt a,ke—a
e k!
> (ae
k!

t)k

e—(l
k=0
= @(¢'=D (15)

Note that if X ~ Poi(«), then by (4), (13), (15)
E[X"] = Bel,,(a). (16)
and
P (0)=E[X]=a ¢"(0)=E[X*] =d®+a. amn
Hence, by (8)

Var(X) = E[X?] - (E[x])>
=a’+a-a?

=a (18)
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2 The 1-analogue moment generating function

We replace X' by the eX (¢) in (4). Note that

> g(x)p(x) if X is discrete random variable,
Elgn)]==4§x, ' o ) i
f_  8§(X) f(x)dx if X is continuous random variable.
Now let

$,(t)=E [ef (#)] be degenerate moment generating function of random variable X. (19)

Then

d
®(1) = —@al0)

d
= d—E[e’f )]
= E[—eA (0]
_ oX
E[“_/” ] (20)
and we obtain the following result.
Theorem 2.1 ¢/,(0) = E[X].
Similarly
” d ’
®q(1) = @3 (1)
d X
= i T ol
_.d
= El g (ea @)
2
E[- (1+/1)2€1( )+ (5 ) 1(0)] @n

Putting ¢ = 0 in (21), we get
Theorem 2.2 ¢/(0) = E[-X1+ X*] = E[X?] - AE[X].
By the definition of variance, we get
Theorem 2.3
Var(X) = E[X°] - (E[X])*

= 7(0) + 29%(0) — (¢,(0))?
= $7(0) + ) (0) (A - ¢7(0)). (22)

Using the above theorems, we determine the expectation and variance of the random variable.
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3 Binomial random variables

Let X -~ B(n, p), then by (9) we have.

®4(1) = E[eX(1)]
=), 40 (Z)pku -t
k=0

= (Z)(;w(r»"(l -
k=0

= (pea(®) +1-p)".

By (23)
@40 = n(pea(n) +1- )" e,
and
1
@10) = nn = D(pea(t) + 1= V' (ea) =npea) +1 =)'

tn(pea(r) +1 - p)"! (H’;Wem).

Thus, we obtain
Theorem 3.1
E[X] = ¢/(0)

=np,
Var(X) = ¢7(0) + ¢, (0)(2 - ¢,(0))

=n(n-— l)p2 —ndp +np+np(d—np)
=np(1-p).

4 Poisson random variables

Let X —~ Poi(a) (a > 0), then by (14) and expectation of degenerate exponential on X, we get

®,(t) = E[eX (1]

© —a,k

PICICE k!a

k=0

& (ea(a)*
EX 2 _
2w
— e—(l/eé‘/l(f)ﬂ/

= palea-1)

Similarly, by (29) we derive the following two equations:

a
+ At

#(0 =€ O e

and

&7 (1) = g¥lead-1) @ 2 ad @
T =e ((1+/1tc/1(l)) T +/lt)2°”(t) + a _Ml)zm(l)).

So we get

(23)

@4

(25)

(26)

@n

(2%

(29)

(30)
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Theorem 4.1

E[X] = ¢(0),
=«
$7(0) + ¢7(0)(2 - ¢,(0))

=a?—al+a+al-ad?

Var(X)

=a.
Observe that

®a(1) = E[e (1)]

5 Pt

n=0
oo m
= > E[(X)nal—
n.
n=0
— ealea(n-1)

It is well known that the degenerate Bell polynomials are defined by
Ll t”
eXlea®=1) _ Z Bel, (x|A)— (See[4]).
n!
n=0
Then we get the following theorem by comparing coefficients on both sides on (33), (34)

Theorem 4.2
E[(X)n,a] = Bel,(ald), where X « Poi(a).

The unsigned Stirling numbers of the first kind denoted by

i

(€1Y)

(32)

(33)

(34

(35)

means the numbers of permutations on n-th elements with k-disjoint cycles And the Stirling numbers of the first

kind are

&mm#JWﬂﬂ

For the given non negative integers n, k with n > k, the A-analogue of the Stirling numbers of the first kind are

defined by

@na= Y Staln)xk (See[s, 6]).
k=0

By (36), we get the following equation:
1 RS "
log(1+0)* = Zk S1(n.k) = (See[6]).

We already know that
logy(ea(r)) = ea(log, (1)) =1¢

1 & "
log/l(1+t):12(/l)nﬁ
n=1 :

1
= (0" = 1) (SeelT)).

(36)

(37N

(3%

(39
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Note that e,(¢) and log,(¢) are inverse functions. From (38), (39) and (34), by replacing ¢ to log,(1 +¢), we
have

& log(1 k
e@(ealog; (1+1)=1)) _ ZBElk(a/l/l)( Og/l(k'+t)) (40)
k=0 :
log(1+1) .
Z Bel,, (QM)%
k!
k=0
— N k
—éBezkmu)( = 49 Fiog(1+1)

=> ezkmu)(—) Zsmn k) (by (38))

= g()
:Z<Z Beli(al) (- A)Vsl(n k)) : 1)
n=0 k=0

On the other hand.

ea/(e} (log, (1+1)-1)) — eart

00 m
=>a"—. 42)
s n!
By comparing coefficients on both sides at (41) and (42), we get the following theorem.

Theorem 4.3

= ZBelk(on)(—) Si(n, k), where X - Poi(a). (43)
paur g(4)

S Logarithmic random variables

In this section, we define a new random variable called the logarithm random variable with parameter a € (0, 1),
the probability mass function of which is given by

1 ot
—, (n=12,--+). (44)

p(i) = _log(l —a)- i

Applying above process to (44), we get
®a(1) = E[e (1)]

Z( log(l - )em
- "1
= ‘1og(1 =y Z(aew» -

1og(1 )Z< D" (—m(z»"

_ auy (aea(n)"
- log(l—a);(_l) n

1
= mlog(l —aey(1)). 45)
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Then

d
®(1) = —@a(n)
1 (04 1
Tlog(l—a) 1-ae () 1+t "

(), (46)

d
(1) = ()
d 1 a 1
- E(log(l “o) 1—ae n) @
a , et ea(?) , 1 e (t)(1-2)
T Tl —a) (—ae )2 T+ TT-aer) 1+

“4n

Thus we have the following theorem

Theorem 5.1

E[X] = ¢/,(0)
a 1
T log(l-a) 1-a
Var(x) = ¢/(0) + ¢,(0)(1 - ¢/(0))
« l-A+ad et 1 e 1
=— - - . (1+ :
log(l-a) (1-a)? log(l-a) l-a log(l-a) 1-a

(4%)

)

a 1

fl @
T Tlogll-a) (-2 @ log(l-a)

)- 49)
(50)

where X is logarithm random variable with parameter @ € (0, 1)

6 A-logarithmic random variables
For A € (0, 1), we note that
1 & (_x)k
log,(1-x) = = (A)g——
og(1-x) AQ e

1 k
=7 A= D@=2) (= k- DD

RS 1 2 k-1 WX
—;;A L= (1= (1= =) (=D

/lk_l

:;T(l) L (DR (51
= k=
2

If X is a random variable with A-logarithmic distribution with parameter & € (0, 1), then probability mass
function of X is

Pl oAt

PalX=nl =i =an "

(52)
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By (51), (52) is the degenerate moment generating function of random variable X

®a(1) = E[e (1)]
bl (lk/lk71

- Zel’{[(l‘)(_log(l —ad) Tk )

k=1

1 > (ea(Had)k
:_log(l—(z/l)kzz; k

LS (et
" log(1 - ad) ;(_1) k

1
= mlog(l - e,l(t)a/l).

Then, we get

d
®(1) = (D)

1 1 al
B _log(l —ad) 1- 6,1([)(1/1. T+ar

(7).
and

d
(1) = Ed"ﬂ(”
1 1 al 1 1 ad

_ . ( 2 _ . .
T log(1—ad) (1-e (ad)? 1 +/ltb’1(t)) log(1—ad) 1-ex(t)ad (1+ar)

By (54), (55), we have
Theorem 6.1
E[X] = (0)

1 1
- log(1 — @) ’ m(_a/l)’
Var(x) = ¢7(0) + ¢/(0)(1 - ¢/(0))
_ 1 al , 1 1 ad
B _log(l —a)). 1—ald'l —a/l+/l+ log(1 —ad)1 —ad

).

7 Covariance of two random variables
Let X and Y be a random variables. Then the covariance of X and Y is defined by

Cov(X.,Y) = E[(X - E[X])(Y — E[Y])]
= E[XY] - E[X]E[Y].

By (58), we obtain the following properties:

Cov(X,X) = E[X?] - E[X]E[X]
=Var(X).

and

Cov(X,Y) = E[XY] - E[X]E[Y]
=Cov(Y, X).

sealr).

(53)

(54

(55)

(56)

(57

(5%

(39)

(60)
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If X and Y are independent then
Cov(X,Y) = E[XY] - E[X]E[Y]
=E[X]E[Y] - E[X]E[Y]
=0.

We’ll utilize the covariance calculating the variance of the sum of random variables. Let X; be random
variables for all kK € N. Then

Var(ZXk) = ZVar(Xk)+ZZCOv(Xi,Xj). (61)
k=0 k=0 itj

Consider the example: assume that X ~ N(0, 1) is the normal random variable with parameter 0, 1 and Y = X 2,
Then

Cov(X,Y) = E[XY] - E[X]E[Y]
= E[X’] - E[X]E[X?].
=0. (62)

So, in the above case we know X, Y are independent variables.
We apply above concept of Poisson random variable, to get some properties. Before that, we would like
to examine a simple recurrence relation for the Bell polynomials. At (13), the generating function of the Bell
n

polynomials are given by =D = 3 Bel, (x)—'. Let us consider
n=0 n!

1 t
e 1= ZBel,,(x)—‘— 1
n!

n=1
tn+1

ZO Bel 4+ (x) EEI (63)

On the other hand

ex(e’—]) 1= ex(e'—l)(l _e—x(e’—l))

=) tn =) fk
= <; Bely(x)—)(1 - ;) Beli(~x) )

= ) B0’ = >0 1 Bet, s ety

n=0 n=0 k=0
s8] n n til
= > (Belu(x) - ( )Belnfk(x)Bezk(—x»—. (64)
k n!
n=0 k=0
Comparing the coefficients on both sides in (63),(64), we get
Theorem 7.1
t n
Bely+1 (x)—— = Bel,(x) — Z " Bel,_i(x)Belg(—x). (65)
n+1 y k

Let X « Poi(a),(a > 0),and Y = X", Consider Var(X +Y). By (16), (17), (18), (58) and (61), we have
Var(X +Y) =Var(X) + Var(Y) +2Cov(X,Y)
=Var(X) + Var(X"™") +2Cov(X, X" )
=a+(E[X*"" V] = (E[X])?) +2(E[X"] - E[X""])
= a + (Beln-2(a) = (Bely-1())?) + 2(Bel, (@) - aBely-1(a))
=a + Belyy_2(@) + 2Bel, (@) — Bel,—1(a)(Bel,—1(a) + ). (66)
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Theorem 7.2
Var(X+Y) = a + Belyy—»(@) + 2Bel, (a) — Bel,—1(a)(Bel,—1(a) + @).

By utilizing the relationship in Theorem 7.1, we can adjust the index of the Bell polynomials in the equation
at the Theorem 7.2 as desired.
Let us consider X «~ Poi(a), (@ > 0),Y = (X — A)n—1.4. Then by (34),(58)
Cov(X,Y) = E[XY] - E[X]E[Y]
= E[(X)n,a] = @E[(X = Dp-1,a]
= Beln(al/l) - “E[(X - /1);1—1,/!] . (67)

‘We note that

n—1 n—1

ZE[(X S T —E[Z(x Do)
n-1

—E[Z(x Do)

1

= E[Z(X - Am;]
n=0 .

=E[e} (1]

= i (S
k=0

e Yy k

A
-=

> (ae, K@)k

=TT

k=0
A
lo—
— e T k(t)

A
lo—
a(e, k(t))—l. (68)

=e

We define new type Bell polynomials by generating function as

A
1-; 00 M
eley T 0)=1 2 Z Bel  y(al)—. (69)
n,l—z
By (68), (69), we get the following theorem.
Theorem 7.3
E[(X — A)p-1,2] = Bel /l(alxl), where X —~ Poi(a). (70)
n,lfz
If limy—o E[(X = Dp-1.2] = E[X""']., then lim,_,o Bel 2(@ld) = Bel,_i(a).
n,lfz

Substituting the above result into the equation (67) gives,

Cov(X,Y) = Bel,(a|1) — aBel /l(oz|/l). (71)

n,l-—

k



134

U. Pyo, Dmitry V. Dolgy

By Theorem 4,2 and Theorem 7.2, we obtain

Var(X + (X — D)p-1,2) =Var(X) + Var((X — D)n-1,2) +2Cov(X, (X — Dn-1,2)
=a+Var((X — A)n-1,2) +2(Bel,(a|d) — aBel /I(QM))

n,1-

k
=@+ (E[(X = Dn-1,0°] = (E[(X = Dn-1.2)?) +2(Bely(@|d) —aBel  ,(ald))
n,l—-—
k
=a+ (E[((X = D)n-1.0)%] - (Bel 2 (|0)))?) +2(Bel,(a|d) — aBel 2(@l).
n,l—; n,l—-—
(72)
Thus, we arrive at the following result.
Theorem 7.4
Var(X + (X = Dp-1,0) ==+ (E[((X - /l)n,u)z] — (Bel /l(al/l)))z) +2(Bel,(a|d) — aBel /l(ozl/l)).

n,1- n,1-
k k

Now, by inputting the necessary foundational values into the expressions we obtained, we can derive results
for the variance.

8 Conclusion

Through the above discussions, we generalized the expressions for the expectations and variances of various
random variables using degenerate formulas, exploring the outcomes. By employing moment functions, we
investigated the relations between probability variables and well-known Stirling numbers and Bell polynomials.
As aresult, we observed that as A goes to 0 in the limit, the expectations and variances of conventional random
variables converge to the same values. We expressed the covariance of Poisson random variables using Bell
polynomials, enabling us to obtain calculated results tailored to real-world scenarios by inserting desired values
for each n, 4, and . In future research, we anticipate obtaining meaningful results by investigating the properties
and specific values of the newly defined Bell polynomial from this paper.
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